The Dirichlet problem at infinity for a negatively curved manifold
نویسندگان
چکیده
منابع مشابه
On the Spectrum of a Finite-volume Negatively-curved Manifold
We show that a noncompact manifold with bounded sectional curvature, whose ends are sufficiently collapsed, has a finite dimensional space of square-integrable harmonic forms. In the special case of a finite-volume manifold with pinched negative sectional curvature, we show that the essential spectrum of the p-form Laplacian is the union of the essential spectra of a collection of ordinary diff...
متن کاملThe Dirichlet problem for minimal surfaces equation and Plateau problem at infinity
In this paper, we shall study the Dirichlet problem for the minimal surfaces equation. We prove some results about the boundary behaviour of a solution of this problem. We describe the behaviour of a non-converging sequence of solutions in term of lines of divergence in the domain. Using this second result, we build some solutions of the Dirichlet problem on unbounded domain. We then give a new...
متن کاملThe Dirichlet Problem at Infinity for Random Walks on Graphs with a Strong Isoperimetric Inequality
We study the spatial behaviour of random walks on innnite graphs which are not necessarily invariant under some transitive group action and whose transition probabilities may have innnite range. We assume that the underlying graph G satis-es a strong isoperimetric inequality and that the transition operator P is strongly reversible, uniformly irreducible and satisses a uniform rst moment condit...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Manifold-valued Dirichlet Problem for Symmetric Diffusions
Harmonic maps between two Riemannian manifolds M and N are often constructed as energy minimizing maps. This construction is extended for the Dirichlet problem to the case where the Riemannian energy functional on M is replaced by a more general Dirichlet form. We obtain weakly harmonic maps and prove that these maps send the diiusion to N-valued martingales. The basic tools are the reeected Di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1983
ISSN: 0022-040X
DOI: 10.4310/jdg/1214438179